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Objective & Benefits

¥ Overall Objectives
Ð Infuse flexible contingent sequences into flight s/w for

robust autonomous operations.
Ð Advance state of the art in ground operations and onboard

autonomy for planetary rovers.

¥ Expected Benefits
Ð Increased rover productivity and science return without

risk to rover safety.
Ð Decreased burden on ground operations.
Ð Capabilities to support human presence on Mars.



Component Technologies

¥ Onboard Autonomy Executive
Ð Conditional Execution
Ð Resource Management
Ð Mode Identification &

Reconfiguration

¥ Ground-based Support Tools
Ð Contingent Rover Language (CRL)
Ð Contingent Scheduling & Editing
Ð Hybrid Simulation



Marsokhod Testbed

Marsokhod (NASA Ames)

¥ Developed at Russian IKI

¥ Previous field tests in Kilauea,
Arizona desert

¥ Vision-based navigation with
stereo cameras: Òvisual servoÓ

¥ Science instruments: cameras,
infrared spectrometer

¥ 3-joint robot arm

¥ Feb. field test in Mojave desert



Rover Autonomy Needs

¥ Robust operation through flexible plans
Ð  Sojourner plan example:

1. Back up to a rock
2. Place spectrometer arm for a reading
3. Take a series of measurements
4. Long traverse to next rock

Ð Flexible resource utilization
¥ Pessimism leads to under-utilization

¥ Optimism leads to plan failure

¥ Failure recovery
Ð ShouldnÕt need to wait for ground control



Planned Execution Scenario

nominal path

contingent path



Planned Execution Scenario

nominal path blocked



Planned Execution Scenario

wheel current too high 
¥ stuck wheel?
¥ encoder failure?
execute diagnostic tests



Planned Execution Scenario

carbonate detected



Planned Execution Scenario

Battery level

E F
abandon traverse, wait for uplink
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Contingent Rover Language

¥ Used for scheduling, uplink, execution

¥ Execution-time contingencies
Ð Anomalous situations
Ð Serendipitous opportunities

¥ Conditions
Ð Start, maintenance and end conditions on rover state
Ð Resources (power, storage)
Ð Flexible time bounds

¥ Alternate plan library
Ð Global contingent branches
Ð Invoked when applicable, on task failure or task finish
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Conditional Executive (CX)

¥ Execute uplinked sequences

¥ Enforce start, maintenance
and end conditions

¥ Respond to state/resource
changes by choosing
contingent branches or
alternate plans



Resource available

Resource claimed

Resource conflict

re
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Resource Manager (RM)

¥ Notice diff. in predicted/actual resource availability

¥ Choices in plan allow the rover to adapt
Ð Respond to overloading by shedding tasks or aborting the

plan
Ð Exploit opportunities by performing extra tasks



Mode ID & Reconfiguration (MIR)
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MIR Rover Model

¥ Model for each component
represents its possible states

¥ Transitions shown
correspond to commands

¥ Implicit probabilistic
transitions to fault modes

¥ System model built up from
component models

¥ Qualitative, modular system
allows reuse of sub-models
Ð Marsokhod models have been

adapted to CMUÕs Nomad
rover
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Mode Identification

¥ Input: qualitative sensor data
Ð provided by monitors

¥ Output: rover state
Ð mode of each component

¥ Simulate state transitions

¥ Assume each component in
expected (nominal) mode

¥ Attempt to find contradiction using deductive inference

¥ If there is a contradiction, find most likely set of faults
consistent with sensor readings

current: high

encoder: zero

pitch: high

TACO: nominal

roll: zero

front-roll: nominal

wheel-state: 
STUCK

current: low encoder-counts: 
nominal

wheel-state:
SLIPPING

motor-state: 
STALLED

motor-state: 
NOMINAL



Architecture Overview

Scientist 
Interfaces

Planner/
Scheduler

Simulator

Rover Op
Interface

Executive
Resource
Manager

Rover Real-Time
System

schedule

science goals

Scientists

Rover operator

conflicts

requests

Mode
Identification

Ground

Rover up
lin

ke
d

se
qu

en
ce



Scientist User Interface

Mars
Map

diagrammatic display
of CRL plan

view / enter / edit
parameters of CRL plan
insert cmd sequences
necessary for uplink

crl
plan

crl
uplink



Contingency Scheduler
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Just-In-Case (JIC) Planning

1. Nominal plan

2. Identify most likely failure

3. Generate a contingency branch

4. Integrate the branch

Advantages:  Focus,  Anytime

Time
Power Storage



Rover Simulator

¥ Real-time simulator for testing command sequences
and fault diagnosis.

¥ Models of simple rover dynamics, power systems
and mechanical failures.

¥ Models of each component in Hybrid cc. Allows
compositional description of dynamic/discrete
behavior, and easy model extension.

¥ I/O using same message formats as rover software.

¥ Rover attributes are displayed in real time on
scientist user interface.



Marsokhod Mojave Ô99 Field Test

¥ Conducted January 28 to February 28, 1999 at Silver Lake dry
lake bed in CaliforniaÕs Mojave desert.

¥ Demonstrated advanced rover technologies and science
investigation strategies for planetary surface operations.

¥ Simulated main objectives for Mars Ô01ÐÕ05 missions.

¥ Initial operational tests of end-to-end architecture.



Status

¥ Current status
Ð Autonomy architecture deployed on Marsokhod rover
Ð Initial field test in Mojave desert completed

¥ Next steps
Ð Deployment of resource management, model-based recoveries
Ð Integration with simulator
Ð Further engineering tests on rover platform
Ð Verification tools (constraint reasoning and simulation)

¥ Future directions
Ð Active sensing & testing for diagnosis
Ð On-board utility refinement & schedule refinement
Ð Multiple threads/timelines in contingency plans



Conclusions

¥ Architecture extends state of the art in planetary
rover autonomous operations
Ð On board:

¥ flexible plans

¥ robust execution

¥ self-diagnosis

Ð On ground:
¥ science/ops interface

¥ simulation

¥ sequence generation


